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1. Introduction

The AdS/CFT correspondence is a powerful tool for studying strongly coupled quantum

field theories. Difficult field theory questions are recast in the language of weakly coupled

gravitational theories in one higher dimension, where they are amenable to semi-classical

analysis. This “geometrization” of non-perturbative field theory phenomena has already

yielded much insight into supersymmetric gauge theories, and recent efforts at describing

the real-world physics of quark-gluon plasmas and condensed matter systems show great

promise.

In this paper we focus on the quantum Hall effect (QHE), and in particular its realiza-

tion on the boundary of AdS. Discovered in the early 80s and studied intensively ever since,

the integer and fractional quantum Hall effects arise in the rather exotic setting of 2 + 1

dimensional electron systems subjected to extremely low temperatures and large magnetic

fields. For reviews see, e.g. [1 – 4]. When immersed in a weak electric field, the conductance

of the system displays a striking series of plateaus. On each plateau the ordinary conduc-

tance is zero, while the transverse (Hall) conductance is found, to startling accuracy, to

be a rational multiple of a “fundamental” unit formed from the elementary constants of

nature (Planck’s constant, the electron charge, and the speed of light). Especially striking

is the fact that these results exist even in the presence of finite temperature and disorder

(within limits), as are of course present in any actual experimental setting.

Being robust in the above sense, the Hall conductance can be thought of as a topologi-

cal quantity, and successful microscopic and macroscopic accounts of the QHE incorporate

this aspect in a crucial way. It also implies that the QHE is suitable for modelling via the

AdS/CFT correspondence. In general, field theories dual to weakly coupled AdS theories

exist in some strongly coupled corner of coupling space. In favorable cases, one can relate
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the weakly coupled field theory to its strongly coupled version through some explicit ex-

trapolation of the couplings. Some observables are either independent of the couplings or

behave smoothly, and so a weak-strong coupling comparison is meaningful. The quantum

Hall conductance is an example of such an observable. The classical (non-quantized) Hall

conductance was given an AdS/CFT interpretation in [5]; see also [6 – 8].

Our AdS construction is motivated by effective field theory descriptions of the QHE

that exploit its relation to the BCS theory of superconductivity [9, 10], along with recent

work on AdS versions of superconductors [11 – 18]. To a particle theorist, the BCS theory

is of course nothing but the Higgs phenomenon corresponding to the spontaneous breaking

of electromagnetic U(1) gauge invariance to a Z2 subgroup [19]. A simple AdS incarnation

involves the condensation of a charged scalar field outside a black hole horizon. We extend

this construction by the introduction of an additional gauge field with a nonzero theta term.

It plays the role of the “statistical gauge field” in the effective field theory description of

the QHE. The statistical gauge field transmutes the electrons into bosons via Aharonov-

Bohm phases [20, 21], allowing the quantum Hall fluid to be described in terms of Bose

condensation.

The remainder of this paper is organized as follows. In section 2 we give an overview

of some relevant facts concerning the QHE. We discuss both model independent aspects as

well as the analogy with Bose condensation. In section 3 we describe our AdS construction,

and show that it indeed leads to the QHE. Some further comments appear in section 4.

Previous work on the QHE in string theory, not directly within the AdS/CFT frame-

work, includes, [22 – 28].

2. Some background on the integer and fractional quantum Hall effects

In this section we give an overview of those aspects of the QHE most relevant to its

description via the AdS/CFT correspondence. While we make no claims to originality, our

presentation differs in some respects from other accounts in the literature. In particular,

we wish to emphasize the generality of the QHE, in the sense that it relies on only a few

underlying assumptions that we spell out. Whether these assumptions are met or not is a

question that can only be answered in terms of a specific microscopic realization.

2.1 Model independent considerations

Consider some system of charged particles in 2 + 1 dimensions. These particles could be

fermions or bosons, or both could be present simultaneously; for convenience we will simply

call them electrons. The electrons are allowed to interact with each other as well as with

any external fields that are present. The theory can be either Galilean or Lorentz invariant.

We assume that over the largest length scales the Hamiltonian is invariant under time and

space translations as well as spatial rotations, but not parity.1

1Recall that parity in 2 + 1 dimensions is defined as sign reversal of one of the spatial directions, since

flipping both spatial directions is equivalent to a rotation.
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The quantum Hall effect arises if the particles are in a state with an energy gap; that

is to say, if the system is in an energy eigenstate |E0〉, the Hamiltonian has no eigenvalues

between E0 and E0 + ∆, where ∆ is a positive number.

To see that this leads to the QHE we proceed as follows. Let Aµ be the electromagnetic

gauge field, and let Aµ be its expectation value (in some gauge) in the gapped state

of interest. In the standard QHE Aµ corresponds to a constant magnetic field. Allow

small fluctuations by writing Aµ = Aµ + aµ. We can derive an effective action for aµ by

performing the path integral over the fluctuations of the electrons. Because the electrons

have an energy gap, this effective action admits an expansion in terms of local operators,

with low dimension operators dominating on large length scales. Since this action must be

gauge invariant, there are no terms with zero derivatives, while at single derivative order

the only possibility is a Chern-Simons term,2

S(a) =
k

4π

∫

d3x ǫαβγaα∂βaγ + . . . (2.1)

where we have indicated that additional terms in the action have two or more derivatives.

k is a pure number when we work in units such that ~ = c = |e| = 1. The Chern-

Simons density famously varies by a total derivative under gauge transformation, and so

the action is gauge invariant. The action is parity odd, and so nonzero k requires parity

non-invariance of the underlying electron system. Parity can be violated by Aµ, by inter-

electron interactions, or otherwise.

We can now compute the response of the system to an applied field. The induced

current is

jα =
δS

δaα
=

k

2π
ǫαβγ∂βaγ + . . . (2.2)

For a constant electric field, Ei = ∂0ai − ∂ia0, the current is thus

ji =
k

2π
ǫijEj , (2.3)

which identifies the conductance as

σij =
k

2π
ǫij . (2.4)

In particular, the longitudinal conductance vanishes, while the transverse conductance is

fixed by k.

In the standard experimental realization of the QHE, the external magnetic field is

varied at fixed charge density. To explain the observed plateaus we have to explain why k

does not vary along with the magnetic field. Further, since k is observed to be a rational

number, it is apparently insensitive to much of the detailed structure of the Hamiltonian,

a point which also requires explanation.

The explanation follows from a “non-renormalization theorem” for k. In particular, let

the action of the system depend on some adjustable parameters, denoted collectively by α.

We require that the action remain gauge invariant as we vary the α, and in particular, we

2Conventions: our metric signature is (−,+, +) and we choose orientation ǫ012 = 1.
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require this to be the case even when we allow these parameters to be spacetime dependent:

α = α(xµ). Examples of such parameters include the strength of the external magnetic

field and the gauge coupling.3

Starting from our original action, we consider a family of actions S(α) depending

on constant α parameters. We stipulate that the gap ∆ remain finite within this family.

Generically, this will be the case for some open neighborhood in α space.4 For each member

of this family we can integrate out the electron fluctuations to obtain an effective action

as in (2.1). The non-renormalization theorem states that k is independent of α.

The proof is extremely simple, and parallels the proof of the non-renormalization of

the Fayet-Iliopoulos parameter in supersymmetric gauge theories [29 – 31]. Consider some

slowly varying α parameters. Then, instead of (2.1) we will get

S(a, α) =
1

4π

∫

d3x k[α(x)]ǫαβγaα∂βaγ + . . . (2.5)

But this term is not gauge invariant for nonconstant α, and it is easy to check that its

gauge variation cannot be canceled by any other local term. Since the action is assumed to

be gauge invariant, the only possibility is that k is independent of α, completing the proof.

We stress the crucial role played by the condition that the energy gap remains finite; if α

is varied such that the gap disappears, k can change. In the QHE this is precisely what

happens as we transition from one plateau to another.

In the case that α refers to the gauge coupling e, the theorem states that k receives

corrections at one-loop, but not beyond. This follows since when we normalize the Maxwell

term to − F 2

4e2
the l-loop term carries the e dependence e2l−2, and so only l = 1 gives an e

independent result.

As a concrete example that will be useful in what follows, consider the case of Dirac

fermions in a constant magnetic field,

Sψ =

∫

d3xψ(i∂/+A/+m+ µγ0)ψ , (2.6)

where we have included a chemical potential µ to control the charge density. The massless

limit of this theory is relevant for the recently observed anomalous integer quantum Hall

effect in graphene [32 – 34].

Parity in x1 acts on the Dirac field as ψ(x1) → γ1ψ(−x1), which implies that the mass

term is parity odd: mψψ → −mψψ.

Writing A = A + a, where A describes a constant magnetic field B, computation of

the one-loop effective action for a yields a Chern-Simons term with coefficient [35]

k =
1

2

{

− sign(m)Θ(m2 − µ2)

+2sign(µ)Θ(µ2 −m2)

[

µ2 −m2

2|B|
+

∞
∑

n=1

1

πn
sin

(

πn
(µ2 −m2)

B

)]}

. (2.7)

3For the latter, normalize the gauge field so the gauge coupling does not appear in the gauge transfor-

mation law; i.e., so that the Maxwell term is −

1
4

R

d3x 1
e2(x)

F µνFµν .
4But not always, such as in a system without any disorder, as our next Dirac fermion example illustrates.
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To interpret this, we note that solutions of the Dirac equation (i∂/ + A/ + m)ψ = 0 have

energy spectrum

ωn =
√

m2 + 2nB (2.8)

where n = 0, 1, 2, . . . or n = 1, 2, . . . depending on whether the electron spin is parallel or

anti-parallel to the magnetic field. For orientation, note that in the non-relativistic limit

m ≫ B, we have ωn ≈ m− 1
2
B
m + (n + 1

2 )Bm , which is the familiar Landau level spectrum

plus a zero point energy. As in the non-relativistic case, the degeneracy for each spin state

is BA/(2π), where A is the area of the system.

The system has an energy gap when a given energy level is completely filled, which

happens for chemical potential

µ2 = m2 + 2pB , p = 1, 2, . . . . (2.9)

This gives Chern-Simons coupling

k = p sign(B) . (2.10)

This illustrates the content of the non-renormalization theorem: for these gapped states

the Chern-Simons coupling is independent of the magnitude of m and B (at fixed µ). On

the other hand, for generic µ, we see that k does depend on these parameters.

To fully explain the integer QHE we need one final ingredient. The above system does

not exhibit plateaus as we vary B keeping everything else fixed. The reason is that if we

start with fully filled energy levels and then change B, we inevitably end up with partially

filled levels and hence no energy gap. The integer QHE only occurs if there are additional

spatially localized states in the spectrum, with energies between those of the Landau levels.

These states arise from disorder in the material. Then as we vary the magnetic field we

simply fill up these localized states. Being localized, these states cannot affect the Chern-

Simons coupling, and hence the Hall conductivity remains fixed until we reach the next

Landau level. At this point k jumps to a new value, and the process repeats itself.

Although we explicitly computed the Chern-Simons coupling only for free electrons,

the non-renormalization theorem tells us that we can turn on inter-electron interactions

without changing the result (provided we do not destroy the gap). Therefore, our free

fermion derivation of the integer QHE actually applies to a whole “universality class” of

theories that can be smoothly connected to the free theory. This explains the robust nature

of the integer QHE.

These considerations highlight that the observed fractional QHE plateaus must corre-

spond to gapped systems that cannot be smoothly deformed to noninteracting electrons.

Instead, they correspond to new universality classes of interacting electrons. Just based on

our general considerations, there is no way of saying which universality classes, i.e. which

values of k, can actually occur. But if a gapped state with a given k does occur, we now

understand why there is a quantum Hall plateau in the conductance, independent of the

microscopic details of the system.
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2.2 Zhang-Hansson-Kivelson model of the fractional QHE

The most prominent fractional quantum Hall plateaus are those for k = 1
2p−1 , with p =

1, 2, . . .. The existence of these states was originally explained by Laughlin [36] in terms

of an explicit class of electron wavefunctions. Alternatively, one can use the language of

effective field theory to model the long-distance aspects of the problem. There are a number

of different effective field theories on the market (for a review of some of these, see [4]).

Here we will follow the approach in [9] (ZHK), since its connection with superconductivity

suggests a natural AdS implementation. It would be interesting to find implementations

also for other effective theories.

The ZHK Lagrangian is

L =
k

4π
ǫµνρaµ∂νaρ + iψ∗(∂0 − i(a0 +A0))ψ −

1

2m
| (∂i − i(ai +Ai))ψ|

2

−
1

2

∫

d2x′|ψ(x)|2V (x− x′)|ψ(x′)|2 . (2.11)

Here ψ is a complex bosonic field; Aµ is the electromagnetic gauge field, treated here as

a non-dynamical external field; and aµ is an additional “statistical gauge field”. The role

of the statistical gauge field is to transmute the bosons into fermions via Aharonov-Bohm

phases [20, 21]. This occurs provided we take

k =
1

2p − 1
, p = 1, 2, . . . . (2.12)

For such values of k, the theory is equivalent to a system of fermions minimally coupled

to the electromagnetic field and interacting via the potential V (x− x′). The advantage of

the bosonic representation is that it allows for a description of the gapped states in terms

of a classical Higgs mechanism.

We now sketch how this model accounts for the fractional QHE plateaus. We will

be somewhat schematic, since the explicit computations are precisely parallel to those in

the AdS construction that follows. The idea is to first look for homogeneous solutions,

representing a constant charge density in a constant magnetic field. These solutions break

the electromagnetic gauge symmetry, yielding a gapped spectrum. Such solutions exist

only at filling fraction ν = k. The excitations at this filling fraction include vortices, which

acquire fractional charges via the Chern-Simons interaction. Varying the filling fraction

away from ν = k, the state of the system is described by a gas of vortices. The gap persists,

and so the Hall conductivity is pinned at the value k
2π .

In somewhat more detail, the first step is to consider the a0 equation of motion, which

ties the statistical magnetic b field to the particle density:

k

2π
b = −|ψ|2 = −ρ . (2.13)

The ai equation forces b = −B, and hence the filling fraction is determined:

k

2π
B = ρ ⇒ ν =

2πρ

B
= k . (2.14)

– 6 –
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The conductance at arbitrary filling fraction is computed as follows. We can split up the

action as

S = SCS(a) + Sψ(ψ, a +A) , (2.15)

and then compute the current in a constant external electric field as

ji =
δSψ
δAi

=
δSψ
δai

= −
δSCS

δai
= −

k

2π
ǫijf0j . (2.16)

Since the total gauge field A+a is massive, we have f0j = −F0j for constant electric fields,

and hence the Hall conductance is indeed k
2π .

Let us clarify one point that is apt to cause confusion. The ZHK theory, as written in

in (2.11), will not by itself lead to a Quantum Hall plateau. The easiest way to see this is to

note that the result σij = ρ
B ǫij can be derived just from Galilean invariance. Accordingly,

σij will vary continuously as we adjust ρ/B away from the special ratio (2.14). Explicitly,

were one to add extra charge to the system, the charge would be carried by a gas of vortices.

In the Galilean invariant theory these vortices would then contribute to the conductivity,

maintaining σij = ρ
B ǫij. To prevent this from happening one needs to include disorder in

the theory. The disorder will break the Galilean invariance, and will localize the vortices,

hence preventing them from contributing to the conductivity. We will not, however, carry

out the explicit task of introducing the disorder, relying instead on the understanding that

it can be done.

Reviewing the chain of reasoning, it becomes apparent that the conclusions are insen-

sitive to the detailed structure of the action, a point that will be important in the AdS

version. We could have started from a general action of the form SCS(a) + Sψ(ψ,A + a).

As long as ψ condenses to break the gauge symmetry, we generically deduce the existence

of fractional QHE plateaus with Hall conductance k
2π .

3. AdS construction

We now turn to the gravitational description of the QHE. We first review a recent model

of an AdS4 superconductor, and then show how to adapt it to the case of the QHE.

3.1 AdS superconductor

The authors of [12] consider a planar, asymptotically AdS4 black hole,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(

(dx1)2 + (dx2)2
)

, (3.1)

with

f(r) =
r2

L2
−
M

r
. (3.2)

This is dual to a 2 + 1 dimensional quantum field theory at the Hawking temperature,5

T =
3M1/3

4πL4/3
. (3.3)

5Taking the temperature strictly to zero yields a singularity in the solutions that follow.
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Adding a gauge field in the bulk with a gauge invariant action is equivalent to considering a

boundary theory with a U(1) global symmetry. If this symmetry is spontaneously broken,

then the theory will exhibit superconductivity with respect to external gauge fields coupled

to the U(1) current. To spontaneously break the symmetry we would like some charged

operator to acquire an expectation value. Via the AdS/CFT correspondence, this means

that we need to find a black hole solution with hair. The simplest possibility is to consider

a charged scalar field ψ with a normalizable profile.

No-hair theorems/conjectures impose some restrictions on the possible hair that can

arise [37]. The specific example considered in [12] consists of the bulk Lagrangian

L = −
1

4
FMNFMN − V (ψ) − |∂ψ − iAψ|2 , (3.4)

with

V (ψ) = −2
|ψ|2

L2
. (3.5)

Working in a small amplitude limit such that backreaction on the metric can be neglected,

the authors find a solution with nonzero At(r) and ψ(r) with large r behavior

At(r) = µ−
ρ

r
+ . . . , ψ(r) =

ψ(1)

r
+
ψ(2)

r2
+ . . . . (3.6)

After choosing boundary conditions such that either ψ(1) or ψ(2) vanishes,6 there is a one-

parameter family of solutions that we can parameterize by the charge density ρ. The

solution represents a charged black hole with scalar hair, and is dual to a field theory in

a state with a spontaneously broken U(1) global symmetry. The size of the condensate is

proportional to amplitude of the normalizable scalar mode ψ(1,2) [38].

To study the response of the system to applied fields we can look for more general

solutions in which the gauge field obeys the boundary condition

Aµ(x
µ, r) = A(0)

µ (xµ) +
1

r
A(1)
µ (xµ) + . . . . (3.7)

Here xµ denote the coordinates of the 2+1 boundary, and we have chosen the gauge Ar = 0.

The Dirichlet problem consists of solving the field equations for prescribed A
(0)
µ (xµ). The

standard AdS/CFT dictionary tells us that the resulting on-shell action is equal to the

partition function of the boundary theory in the presence of external sources A
(0)
µ (xµ)

coupled to the U(1) current.

Since the gauge symmetry in the bulk is spontaneously broken, the on-shell action

admits a derivative expansion. At quadratic order in fluctuations around the background

solution, this action will take the form

S =

∫

d3x πµνA(0)
µ A(0)

ν + derivative terms , (3.8)

with nonzero π00 and π11 = π22. The values of πµν , which are a function of the charge

density ρ, can be extracted from the numerical results in [12], but the precise values will

6Both choices yield normalizable solutions.
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not be needed. What really matters is that πµν is nonzero, which is in turn a direct

consequence of the Higgs mechanism in the bulk. On very general grounds, the existence

of the mass term in (3.8) implies superconductivity [19], and also plays a key role in giving

fractional quantum Hall behavior.

3.2 Quantum Hall construction

We are now ready to describe our bulk model of the QHE. The background geometry is

the same as in (3.1), and the action is similar to (3.4), but with the addition of an extra

gauge field aM with a nonzero theta term,

L =
k

4π
ǫMNPQfMNfPQ −

1

4
(F + f)MN (F + f)MN − V (ψ) − |∂ψ − i(A+ a)ψ|2 . (3.9)

The theta term is equivalent to a Chern-Simons term on the boundary, a fact exploited in

a related context in [39]. In order for this to be a dynamical Chern-Simons term we allow a

asymptotic behavior of aµ as in (3.7), but now also let a
(0)
µ freely vary. That is, we demand

that the action be stationary under variations of a
(0)
µ . By contrast, we hold A

(0)
µ fixed, so

that it can be interpreted as the external electromagnetic field. Since we are varying a
(0)
µ ,

it can be though of as a dynamical field in the boundary theory (indeed it is the statistical

gauge field of the ZHK model). This is somewhat non-standard in the AdS/CFT context

(but see [40] for another example), but since it leads to a consistent theory, at least at the

classical level, we adopt this as part of the definition of our theory.

At this effective field theory level k is an arbitrary number. In the ZHK model the

values (2.12) were singled out in order for the theory to describe fermions of unit charge,

i.e. electrons. In the present context, we expect that if our model has some underlying

weak-coupling brane description then certain special values of k will emerge. But for now,

k is arbitrary.

It will often be convenient to write the total action as

S = SCS(a) + Sψ(ψ,A + a) , (3.10)

where SCS(a) denotes the first term in (3.9), and Sψ is everything else.

The a
(0)
t equation of motion relates the charge density to the statistical magnetic field,

−
k

2π
b =

δSCS

δa
(0)
t

= −
δSψ

δa
(0)
t

= −
δSψ

δA
(0)
t

= −ρ . (3.11)

Next, we look for a solution of the bulk equations of motion with a constant magnetic field

on the boundary. Since the theta-term does not contribute to the A equation of motion,

the combination A+a obeys the same bulk equation as did A in the superconductor setup.

Therefore, we can use the same solution as before, but now for A+ a:

At(r) + at(r) = µ−
ρ

r
+ . . . , ψ(r) =

ψ(1)

r
+
ψ(2)

r2
+ . . . , (3.12)

and we can trivially turn on constant magnetic fields as well,

B = −b = constant . (3.13)

– 9 –
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In boundary language, we are turning on a nonzero external magnetic field B in a system

carrying a conserved charge density ρ. Any magnetic field is allowed by the bulk equations,

but this freedom is removed by (3.11), which fixes

B = −b =
2πρ

k
. (3.14)

This equation determines the preferred filling fractions for which these simple homogeneous

solutions exist.

Next we compute the conductance by turning on a constant electric field in A
(0)
µ . The

current is given by differentiating the on-shell action,

jµ =
δS

δA
(0)
µ

. (3.15)

Given the structure (3.10), and the a
(0)
µ equation of motion, we have

jµ =
δSψ

δA
(0)
µ

=
δSψ

δa
(0)
µ

= −
δSCS

δa
(0)
µ

=
k

2π
ǫµνρ∂νa

(0)
ρ . (3.16)

To complete the computation we need to express a
(0)
µ in terms of A

(0)
µ . For this we use

the derivative expansion of the on-shell action, keeping in mind that we are interested in

the response to a constant electric field. At quadratic order in fluctuations, zero and one

derivative terms are given by combining (3.8) and the Chern-Simons term,

S =

∫

d3x

(

πµν(A+ a)(0)µ (A+ a)(0)ν +
k

4π
ǫµνρa(0)

µ ∂νa
(0)
ρ + . . .

)

. (3.17)

The a
(0)
µ equation of motion then implies

a(0)
µ = −A(0)

µ + . . . (3.18)

For a constant electric field, the exact current is therefore given by

ji =
k

2π
ǫijF0j , (3.19)

yielding the conductance

σij =
k

2π
ǫij . (3.20)

As shown above, homogenous solutions exist only for magnetic field B = 2πρ
k . What hap-

pens if we vary B while keeping the total charge fixed, as is done in a real experiment?

The only possibility is that the solution becomes inhomogeneous, and we need these in-

homogeneities to carry charge. There is a natural candidate for these. Instead of taking

constant ψ(1,2) we can look for vortex configurations. These vortices will be accompanied

by magnetic b flux, in order to render the energy finite, just like in the Abelian Higgs
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model. The Chern-Simons interaction implies that a vortex carrying r units of magnetic

flux acquires a charge7

Q = kr . (3.21)

We expect that the solution for arbitrary magnetic field consists of a distribution of vortices

living in the homogeneous background, where the latter continues to obey B = 2πρ
k . This

is the effective field theory version of Laughlin’s quasiparticle explanation of the fractional

QHE states [36].

In order that these vortices not contribute to the conductance they need to be spatially

localized. As discussed in section 2.2, in the condensed matter context, this occurs through

the presence of disorder; the vortices bind to impurities in the sample. This effect is not

taken into account explicitly in the simple ZHK Lagrangian (2.11), but can be added by

hand. Similarly, here we could model the effects of disorder by generalizing the boundary

conditions to include spatial variation, which will localize the vortices.

4. Discussion

This work is a first step in studying the QHE within the AdS/CFT correspondence. We

have only given an AdS version of the story, and to exploit the real power of AdS/CFT we

would like to be able to compare against some dual non-gravitational description, perhaps

in terms of intersecting branes. Also, on the AdS side we just studied a toy theory, not

obtained directly from string theory. However, the basic mechanism is quite general, and

so will apply to a large class of theories.

There are many other things to study within this model, such as the full AC conduc-

tivities, vortex solutions, edge states, multilayer systems, etc. It would also be desirable to

generalize the model to allow for transitions among different plateaus. This would involve

promoting k to a dynamical variable. We hope to return to these problems in the future.
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